메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Jingjing Bai (Southeast University) Wei Gu (Southeast University) Xiaodong Yuan (Jiangsu Electrical Power Company Research Institute) Qun Li (Jiangsu Electrical Power Company Research Institute) Bing Chen (Jiangsu Electrical Power Company Research Institute) Xuchong Wang (Southeast University)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.10 No.1
발행연도
2015.1
수록면
92 - 101 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As one type of power quality (PQ) disturbance sources, high-speed rail (HSR) can have major impacts on the power supply grid. Providing timely and accurate warning information for PQ problems of HSR is important for the safe and stable operation of traction power supply systems and the power supply grid. This study proposes a novel warning approach to identify PQ problems and provide warning prompts based on the monitored data of HSR. To embody the displacement and status change of monitored data, multi-features of different sliding windows are computed. To reflect the relative importance degree of these features in the overall evaluation, an analytic hierarchy process (AHP) is used to analyse the weights of multi-features. Finally, a multi-features similarity algorithm is applied to analyse the difference between monitored data and the reference data of HSR, and PQ warning results based on dynamic thresholds can be analysed to quantify its severity. Cases studies demonstrate that the proposed approach is effective and feasible, and it has now been applied to an actual PQ monitoring platform.

목차

Abstract
1. Introduction
2. The PQ Characteristics of HSR
3. Warning Approach for PQ Abnormal Monitored Data of HSR
4. Case Studies
5. Conclusions
References

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2016-560-000980543