메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
한기준 (한국과학기술원) 장진철 (한국과학기술원) 이문용 (한국과학기술원)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.12
발행연도
2014.12
수록면
1,117 - 1,125 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 폭소노미라고 불리는 데이터들이 사용자의 의도 파악 및 흥미를 분석하는 데에 매우 유용하게 쓰이고 있다. 본 논문은 폭소노미 데이터를 이용한 개인화 검색에서, 기존의 벡터 기반 프로파일링 및 유사도 계산 모델의 한계점을 지적하고, 이러한 한계를 극복하기 위한 방법으로 그래프 기반의 프로파일링 및 유사도 계산법을 제안한다. 최종적으로 그래프 기반의 개인화 검색 모델에 추가적으로 질의어간의 근접성까지 고려한 보다 발전된 개인화 검색 기법을 제안하였다. 본 연구에서는 복수의 데이터셋을 사용한 객관적인 성능 평가 실험을 통해 제안한 모델이 기존의 벡터 스페이스 모델에 기반한 프로파일링 기법 및 프로파일 간의 유사도 계산 기법보다 더 뛰어난 개인화 검색 결과를 제공함을 확인하였다. 또한 추가적인 파라미터 실험을 통하여, 제안하는 모델은 어떠한 형태의 데이터셋에도 쉽게 적용가능함을 보였다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 연구동기
4. 제안하는 방법
5. 실험
6. 결론 및 향후연구
References

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002853141