메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Batselem Jagvaral (숭실대학교) Jemin Kim (숭실대학교) Wan Gon Lee (숭실대학교) Young Tack Park (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers Journal of KIISE Journal of KIISE Vol.41 No.10
발행연도
2014.10
수록면
762 - 773 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
시맨틱 웹상에서 RDFS로 표현된 데이터의 사용 증가로 인하여, 대용량 데이터의 추론에 대한 많은 요구가 생겨나고 있다. 많은 연구자들은 대용량 온톨로지 추론을 수행하기 위해서 하둡과 같은 고가의 분산 프레임워크를 활용한다. 그러나, 적절한 사이즈의 RDFS 트리플 추론을 위해서는 굳이 고가의 분산 환경 시스템을 사용하지 않고 단일 머신에서도 논리적 프로그래밍을 이용하면 분산 환경과 유사한 추론 성능을 얻을 수 있다. 본 논문에서는 단일 머신에 논리적 프로그래밍 방식을 적용한 대용량 RDFS 추론 기법을 제안하였고 다중 머신을 기반으로 한 분산 환경 시스템과 비교하여 2억개 정도의 트리플에 대한 RDFS 추론 시스템을 적용한 경우 분산환경과 비슷한 성능을 보이는 것을 실험적으로 증명하였다. 효율적인 추론을 위해 온톨로지 모델을 세부적으로 분리한 메타데이터 구조와 대용량 트리플의 색인 방안을 제안하고 이를 위해서 전체 트리플을 하나의 모델로 로딩하는 것이 아니라 각각 온톨로지 추론 규칙에 따라 적절한 트리플 집합을 선택하였다. 또한 논리 프로그래밍이 제공하는 Unification 알고리즘 기반의 트리플 매칭, 검색, Conjunctive 질의어 처리 기반을 활용하는 온톨로지 추론 방식을 제안한다. 제안된 기법이 적용된 추론 엔진을 LUBM1500(트리플 수 2억개) 에 대해서 실험한 결과 166K/sec의 추론 성능을 얻었는데 이는 8개의 노드(8 코아/노드)환경에서 맵 리듀스로 수행한 WebPIE의 185K/sec의 추론 속도와 유사함을 실험적으로 증명하였다. 따라서 단일 머신에서 수행되는 본 연구 결과는 트리플의 수가 2억개 정도까지는 분산환경시스템을 활용하지 않고도 분산환경 시스템과 비교해서 비슷한 성능을 보이는 것을 확인할 수 있었다.

목차

요약
Abstract
1. Introduction
2. Related Work
3. Research Background
4. Reasoning
5. Experimental Results
6. Conclusion
References

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002734390