메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안병현 (Gyeongsang National University) 김용휘 (Gyeongsang National University) 이종명 (Gyeongsang National University) 이정훈 (Gyeongsang National University) 최병근 (Gyeongsang National University)
저널정보
한국소음진동공학회 한국소음진동공학회논문집 한국소음진동공학회논문집 제24권 제7호
발행연도
2014.7
수록면
555 - 561 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Acoustic Emission technique is widely applied to develop the early fault detection system, and the problem about a signal processing method for AE signal is mainly focused on. In the signal processing method, envelope analysis is a useful method to evaluate the bearing problems and wavelet transform is a powerful method to detect faults occurred on rotating machinery. However, exact method for AE signal is not developed yet for the rotating machinery diagnosis. Therefore, in this paper two methods which are processed by Hilbert transform and DET for feature extraction. In addition, we evaluate the classification performance with varying the parameter from 2 to 15 for feature selection DET, 0.01 to 1.0 for the RBF kernel function of SVR, and the proposed algorithm achieved 94 % classification of averaged accuracy with the parameter of the RBF 0.08, 12 feature selection.

목차

ABSTRACT
1. 서론
2. 알고리즘
3. 실험 및 결과
4. 결론
References

참고문헌 (12)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0