메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Mohammad Arif Rasyidi (Pusan National University) Jeongmin Kim (Pusan National University) Kwang Ryel Ryu (Pusan National University)
저널정보
한국지능정보시스템학회 지능정보연구 지능정보연구 제20권 제1호
발행연도
2014.3
수록면
121 - 131 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
교통속도는 교통 문제를 해결하기 위한 중요한 지표 중 하나이다. 이를 이용하여 교통혼잡 탐지, 주행 시간 예측, 도로 설계와 같은 다양한 문제 해결에 활용할 수 있다. 따라서 정확한 교통속도 예측은 지능형 교통 시스템의 개발에 있어 필수적인 요소라고 할 수 있다. 본 논문에서는 대한민국 부산시의 특정 도로를 대상으로 교통 속도에 대한 분석 및 예측을 수행하였다. 과거 연구에서는 대상 도로의 속도 예측을 위해 과거 대상 도로의 교통속도 이력 데이터만을 사용하였다. 그러나 실제 대상 도로의 교통 상황은 인접한 도로의 교통 상황의 영향을 받게 된다. 따라서 본 논문에서는 실제 부산시의 과거교통속도 이력 데이터를 기반으로 대상 도로와 인접 도로를 모두 고려하여 교통속도 예측 모델의 학습을 위한 속성을 추출하였다. 이와 같이 후보 속성들을 추출 한 후 선형 회귀 (linear regression), 모델트리 (model tree) 및 k-nearest neighbor (k-NN) 기법을 이용하여 속성의 부분집합 선택 (feature subset selection)과 교통속도 예측 모델 생성을 수행하였다. 실험 결과 주어진 교통 데이터에서 k-NN 기법은 선형 회귀 및 모델 트리 기법에 비해 평균절대백분율오차 (mean absolute percent error, MAPE)와 제곱근평균제곱오차 (root mean squared error, RMSE) 측면에서 더 나은 성능을 보임을 확인하였다.

목차

1. Introduction
2. Problem Formulation
3. k-Nearest Neighbor Algorithm
4. Experimental Procedure and Result
5. Result
6. Conclusion
Reference
국문요약

참고문헌 (15)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-003-001311719