메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Isamu Nishida (Kobe University) Masato Maeda (Kobe University) Tsuneo Kawano (Setsunan University) Keiichi Shirase (Kobe University)
저널정보
(사)한국CDE학회 한국CDE학회 국제학술발표 논문집 한국CADCAM학회 2010 ACDDE
발행연도
2010.8
수록면
949 - 956 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Factory automation and efficiency-oriented unmanned factories have become the major trend in manufacturing systems in recent years. However, human-centered manufacturing is gaining attention because of the flexibility it offers to manufacturing systems in terms of both product variety and volume.
Although some digital human models capable of estimating the power generated by human muscles during various manufacturing-related tasks have been developed, a more effective method of analyzing muscle power is required to better estimate human muscle power. In the present study, a new musculoskeletal model taking the function of bi-articular muscles into consideration is applied to estimate the power generated by human muscles.
The purpose of this study is to optimize working conditions that satisfy both the height of subjects and their maximum muscle power during a lifting operation. Results indicate the model is able to predict the heaviest weight and maximum height that this weight can be lifted to keep muscle power of the upper limb of a subject under 70% of the maximum muscle power. Moreover, the analyzed muscle power of the upper limb from experimental lifting operations is in good agreement optimized environments where humans can work efficiently and safely considering their physical characteristics.

목차

Abstract
1. Introduction
2. Human mathematical model and musculoskeletal model
3. Simulation of optimal working conditions for a lifting operation
4. Verification experiment
5. Experimental results and discussion
6. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001128167