메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Tae-Ju Lee (Chung-Ang University) Seung-Min Park (Chung-Ang University) Kwang-Eun Ko (Chung-Ang University) Kwee-Bo Sim (Chung-Ang University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2013
발행연도
2013.10
수록면
237 - 240 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In previous paper, we proposed the novel method of nonlinear unsupervised feature classification for EEG(Electroencephalography) signal based on HS (Harmony Search) algorithm. Using this method, we could convert classification problem into finding the smallest sum of Euclidean distances between vectors belonging to each class. Therefore the performance of proposed method was influenced by the performance of optimization algorithm. In this paper, to compare efficiency and performance of various heuristic algorithm for this method, we applied three different heuristic optimization algorithm, HS, PSO (Particle Swarm Optimization), and DS (Differential Search). For the simulation, we used EEG signal data from BCI Competition IV Dataset I. Two class data from two subject with 100 Hz sampling rate were used. For feature extraction, common spatial pattern algorithm was used. In conclusion, the fastest algorithm was HS algorithm with about 4.4 seconds of an average computational time, the algorithm with best classification rate was also HS algorithm and the average classification rates of subject ‘f’ and ‘g’ were 84.08 % and 81.95 %. The slowest heuristic algorithm was PSO algorithm with about 7.5 second in an average computational time, and the worst average classification rate was 57.27 % from subject ‘g’ with PSO algorithm. We could draw a conclusion that the best algorithm for proposed classification method was HS algorithm.

목차

Abstract
1. INTRODUCTION
2. THEORETICAL BACKGROUND
3. PROPOSED METHOD
4. SIMULATIONS AND RESULTS
5. CONCLUSION AND FUTURE WORKS
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0