메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장현우 (부산대학교) 김광백 (신라 대학교) 김창원 (부산대학교병원)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제17권 제9호
발행연도
2013.9
수록면
2,206 - 2,212 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
본 논문은 Fuzzy Contrast Enhancement 기법과 FCM을 이용하여 대비를 개선한 후, Fuzzy Contrast Enhancement를 간과 신장의 초음파 영상에 적용하여 지방간 농도 수치를 분류하는 방법을 제시한다. 간, 신장 영역을 촬영한 초음파 영상에서 촬영 정보나 눈금자 등과 같이 필요 없는 부분을 잡음으로 간주하여, 제거한 ROI 영상을 추출하고, Fuzzy Contrast Enhancement 알고리즘을 이용하여 명암 대비를 강조한다. Fuzzy Contrast Enhancement 기법이 적용된 간, 신장 영역 영상에서 평균 이진화를 적용한 후, 평균 이진화를 적용한 영상에 Blob 알고리즘을 적용하여 간, 신장 실질 영역의 ROI 영상을 추출한다. 추출한 간 영역과 신장영역의 ROI 영상을 FCM을 이용하여, 10개의 명암도 Level로 각 각 분류한 후, 분류된 간, 신장 실질 영역의 명암도 Level 중 많이 분포된 명암도 Level을 기준으로 간, 신장 실질 영역의 대표 명암도를 추출한다. 제안된 방법을 간, 신장 영역을 촬영한 초음파 영상에 적용하여 간의 지방도를 분류한 결과, 영상의학과 전문의의 판독과 일치하여 향후 지방간의 진단에 효과적으로 적용할 수 있는 방법이 될수 있을 것으로 사료된다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. Fuzzy Contrast Enhancement
Ⅲ. FCM 양자화를 이용한 지방간 대표값 추출
Ⅳ. 시물레이션
Ⅴ. 결론

참고문헌 (6)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-550-002821874