메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이종찬 (청운대학교) 이원돈 (충남대학교)
저널정보
한국정보통신학회 한국정보통신학회논문지 한국정보통신학회논문지 제14권 제1호
발행연도
2010.1
수록면
53 - 62 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 변수 값들이나 부류 값을 손실한, 불완전한 데이터를 포함하는 데이터 집합을 가지고 학습하는 문제 에 적용될 수 있는 분류 알고리즘을 소개한다. 이 알고리즘은 가중치 값과 확률 기법들을 이용하는 데이터 확장 방법을 사용한다. 이는 휘셔(Fisher)의 식을 기반으로 최적의 투사 면이 되도록 고려된 분류기를 확장함으로써 수행한다. 이를 위해, 데이터 확장에 적용되는 과정으로 부터 몇몇 식들이 유도된다. 제안한 알고리즘의 성능평가를 위해, 데이터에서 하나의 변수를 선택하고 이 선택된 변수에 소실 값과 소실되지 않은 값들의 비율을 변형함에 의해 다른 측정값들의 결과들이 반복적으로 비교된다. 또한 데이터 집합의 객관적인 평가를 위해 기계학습에서 지식 습득 도 구로 널리 쓰이는C4.5의 결과와 비교한다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 배경
Ⅲ. 불완전환 데이터를 처리하기 위한 FLDF 분류 모델
Ⅳ. 실험
Ⅴ. 결론
참고문헌

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0