메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
류정우 (세이프티아 기술연구소) 김명원 (숭실대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 데이타베이스 정보과학회논문지 : 데이타베이스 제40권 제2호
발행연도
2013.4
수록면
89 - 98 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
스트리밍 데이터에서 분류기는 그것의 학습데이터와 분류할 데이터간의 분포가 다를 수 있기 때문에 갱신되어야 한다. 그러나 어느 데이터가 현재 분류기의 학습데이터와 동일한 분포에서 발생되는 데이터인지 알 수 없다. 따라서 주기적으로 분류기를 갱신하는 것이 일반적인 방법이다. 이러한 접근방법에서는 갱신 주기를 데이터 개수로 결정하였을 때, 사전에 분류기의 갱신 주기를 짧게 설정하면 불필요하게 분류기를 갱신하게 되고, 반대로 갱신 주기를 길게 설정하면 스트리밍 데이터 분포 변화에 대한 분류기 적응이 느려진다. 본 논문에서는 학습 데이터를 이용하여 분류기를 갱신하기 위한 데이터들을 온라인상에서 선택할 수 있는 방법을 제안하고, 이를 적용하여 스트리밍 데이터에서 앙상블 분류기를 생성한다. 제안한 방법은 온라인에서 데이터 선택 주기가 짧아지면 분류기 갱신이 자주 일어나고, 선택 주기가 길어지면 분류기 갱신주기가 길어진다. 제안한 방법을 적용한 앙상블이 9개의 실험 데이터에 대해서 기존 방법을 적용한 앙상블에 비해 평균 10.2% 레이블된 데이터를 가지고 평균 5.1% 단일 분류기를 생성하면서 거의 동등한 수준의 정확성을 얻었다. 또한 제안한 방법이 효율적으로 앙상블을 갱신하는지를 확인하기 위해서 3개의 벤치마크 스트리밍 데이터를 사용하여 단일 분류기의 생성 시점을 분석하였다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 제안한 앙상블 분류기
4. 실험
5. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-300-003059334