메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박민우 (경북대학교) 원광희 (경북대학교) 정순기 (경북대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제16권 제6호
발행연도
2013.6
수록면
764 - 781 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 시차영상 생성과 레이블링(labeling)을 동시에 수행하는 빌보드 스윕 스테레오 시차정합 알고리즘을 적용하고, 두 단계로 구성된 복합 가설생성(hypothesis generation) 단계를 적용함으로서 거짓알림(false alarm)을 줄이고, 차량 검출의 정확도를 높이는 방법을 제안한다. 먼저 차량의 정면에 장착된 두 대의 카메라를 이용하여 영상을 획득하고, 이 영상을 사용하여 빌보드 스윕 스테레오 시차정합 알고리즘을 수행하여 지면과 배경이 제거된 장애물(obstacle)만이 존재하는 특수한 형태의 시차영상을 생성한다. 이렇게 생성된 지면과 배경이 제거된 레이블링된 시차영상을 이용하여 차량 검출 및 추적을 수행한다. 차량 검출 및 추적단계는 크게 세 단계로 나눠진다. 첫 번째 단계는 학습 단계로서 학습데이터로부터 Gabor필터를 사용해서 특징점을 추출하고, 추출된 특징점을 학습한 뒤 서포트 벡터머신 분류기를 생성하는 단계이다. 두 번째 단계는 스테레오 카메라의 영상 중 주 카메라의 영상으로부터 에지 정보를 추출하고, 지면과 배경이 제거된 시차 영상으로부터 얻어진 시차정보를 이용해서 차량이 존재하는 후보영역을 뽑은 뒤 서포트 벡터머신 분류기를 사용하여 차량을 검출하는 단계이다. 마지막 단계는 차량 추적단계로서 검출이 완료된 차량들은 다음 프레임에서 템플릿 매칭을 수행하여 추적한다. 이는 추적에 성공할 경우 다음 프레임의 차량 검출시 후보영역에서 배제함으로서 전체적인 차량 검출 성능을 향상시킨다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 시스템 개요
4. 차량 후보영역 검출을 위한 빌보드 스윕 스테레오 시차정합
5. 차량 검출 및 추적
6. 실험 및 결론
참고문헌

참고문헌 (28)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-000-002908593