메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
연구보고서
저자정보
Masanobu KANEDA (Kagawa University) Jun’ichiro HAYASHI (Kagawa University) Seiji HATA (Kagawa University) Ichiro ISHIMARU (Kagawa University) Shigeaki MORIMOTO (Ryusyo Ind. Co.) Hiroaki KOBAYASHI (Kagawa Prefecture Industrial Technology Center)
저널정보
대한전자공학회 대한전자공학회 기타 간행물 Korea-Japan Joint Workshop on Frontiers of Computer Vision (FCV) 2010
발행연도
2010.2
수록면
96 - 101 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The demand for a mobile devices such as cellular phones is expanded. These devices have a lot of micro devices. To meet with these requirements, amount of production of micro devices is increased. For the micro device’s production line, the inspection system is required for its quality control. A nano-level surface shape measurement method is one of them. For this application, it is common to use light interference technology, such as white light interference method and phase shift method. But these methods have some problem. First, these methods have weakness for vibration. Second, measurement speed is very slow to be used for online inspection. These problems come from that these method require many images. To solve these problems, the adaptive analysis method of interference fringes has been developed. This method obtains surface profile from only one image. In this method, an image with interference fringes is used. The phase is obtained by analyzing brightness profile of the interference fringes. And, the height is calculated from the phase changes. Using the method, measurement speed can be fast and robust at vibration. In this paper, the basic idea of the method and result of the primary experience are explained.

목차

Abstract
1. Introduction
2. Related research
3. Adaptive analysis method of interference fringes
4. Experimental results
5. Conclusion
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0