메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
공창덕 (조선대학교) 강명철 (조선대학교) 박광림 (조선대학교)
저널정보
한국추진공학회 한국추진공학회지 한국추진공학회지 제17권 제2호
발행연도
2013.4
수록면
71 - 83 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (4)

초록· 키워드

오류제보하기
항공기 가스터빈의 운용율을 극대화 하고 정비 비용을 최소화하기 위해 최근 모델기반방법이나 인공지능방법을 이용한 첨단상태진단기법들을 적용하고 있다. 이 진단 방법들 중 비선형 GPA방법과 유전자 알고리즘을 이용한 엔진 진단방법들이 선형 GPA, 퍼지 로직 및 신경망 이론 등의 타 방법들에 비해 장점을 가지고 있는 것으로 알려졌다. 이에 본 연구에서는 항공기용 AE3007H 터보팬엔진의 상태 진단에 비선형 GPA기법과 유전자 알고리즘을 적용한 후 비교를 통해 센서 노이즈와 바이어스가 있는 경우 유전자 알고리즘이 보다 우수한 진단 기법임을 확인하였다.

목차

ABSTRACT
초록
1. 서론
2. 연구대상 터보팬 엔진의 성능모델 구성
3. 성능진단기법
4. 성능 진단 해석
5. 선형 및 비선형 GPA 와 유전자 알고리즘을 이용한 성능 진단 해석결과 비교
6. 결론
참고문헌

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-570-003607303