메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Sung-Hwan Jung (Changwon National University)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제16권 제1호
발행연도
2013.1
수록면
19 - 28 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
In this research, we presented an effective clustering method based on ICA for the analysis of huge Raman hyperspectral dental data. The hyperspectral dataset captured by HR800 micro Raman spectrometer at UMKC-CRISP(University of Missouri-Kansas City Center for Research on Interfacial Structure and Properties), has 569 local point has 1,005 hyperspectal dentin data. We compared the clustering effectiveness and the clustering time for the case of using all dataset directly and the cases of using the scores after PCA and ICA. As the result of experiment, the cases of using the scores after PCA and ICA showed, not only more detailed internal dentin information in the aspect of medical analysis, but also about 7~19 times much shorter processing times for clustering. ICA based approach also presented better performance than that of PCA, in terms of the detailed internal information of dentin and the clustering time. Therefore, we could confirm the effectiveness if ICA for the analysis of Raman hyperspectral dental data.

목차

ABSTRACT

1. INTRODUCTION

2. CLUSTERING FOR HYPERSPECTRAL DATA ANALYSIS

3. EXPERIMENT AND DISCUSSION

4. CONCLUSION

REFERENCES







참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-004-000303861