메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Yoichi Hirashima (Osaka Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS-SICE 2009
발행연도
2009.8
수록면
1,728 - 1,733 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper addresses scheduling problems on the material handling operation at marine container-yard terminals. The layout, removal order and removal destination of containers are simultaneously optimized in order to reduce the waiting time for a vessel. The schedule of container-movements is derived by autonomous learning method based on a new learning model considering container-groups and corresponding Q-Learning algorithm. In the proposed method, the layout and movements of containers are described based on the Markov Decision Process (MDP), and a state is represented by a container-layout with a selection of a container to be removed or a selection of destination on where the removed container are placed. Then, a state transition arises from a container-movement, a selection of container-destination, or a selection of container to be removed. Only the container-movement takes a cost, and a series of container-movements with selections of destination and order of containers is evaluated by a total amount of costs. As a consequent, the total amount of costs reflects the number of container-movements that is required to achieve desired container-layout.

목차

Abstract
1. INTRODUCTION
2. PROBLEM DESCRIPTION
3. REINFORCEMENT LEARNING FOR MARSHALLING PLAN
4. SIMULATIONS
5. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000765267