메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Suk-Ho Jang (KOOKMIN University) Dong-Jin Yoon (KOOKMIN University) Jae-Hwan Kim (KOOKMIN University) Byong-Woo Kim (KOOKMIN University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2011
발행연도
2011.10
수록면
744 - 747 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Typically, obstacle that UGV have to avoid can be divided into two different types, static and moving-obstacle. UGV should have an ability to separate static and moving obstacle. Because avoidance method for moving-obstacle is different from method for static-obstacle. The type of output data of LIDAR is cloud points data. When UGV separates moving obstacles, it is difficult to that trace it, calculating vectors by point unit. So we are going to simplify cloud points data into a specific object data, and judge the object"s movement. Also, we can recognize the object"s feature and dimension using processed data. It is just first step to recognize the environment with LIDAR. This research proposes the algorithm that classifies a lot of objects from LIDAR"s point cloud data; The 1st step is the segmentation that is extracting process some specific points from LIDAR"s cloud point data and is clustering step using specific points. Next step is the classification based on segmentation data. Via this process, we are able to obtain the object data. This research will be basis of recognition and avoidance algorithm for moving obstacles.

목차

Abstract
1. INTRODUCTION
2. SENSOR OVERVIEW
3. SEGMENTATION
4. CLASSIFICATION
5. EXPERIMENTS
6. COCLUSION AND DISCUSSION
7. ACKNOWLEDGMENT
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000913478