메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Analysis of Data Structures used for Storing (University of Florida) Carl Crane (University of Florida) Kuk Cho (University of Science and Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
1,496 - 1,501 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper compares the use of a point cloud data storage structure with a voxel based storage structure for 3D data collected with LADAR. The motivation for this work is to support the development of a classification system to model the environment of an autonomous vehicle operating in an unstructured natural setting. The classifier should be able to detect trees, bushes, and ground based on the data. Most LADAR sensors provide accurate 2-D range information in a plane, but we generate 3-D data from the sensor by articulating it using a pan-tilt mechanism. A 3-D grid of voxels is used with each voxel representing a cubic region in space with an associated value to indicate the region’ occupancy. We discuss how this voxel representation compares with a point cloud representation in the process of data collection, data storage, and data processing and also look at the complexity of merging new data with old data in the same region. There are two main contributions. The first is comparing a possible voxel based data representation with one possible point cloud data representation. The second is determining reasonable parameters (voxel size, LADAR pitch angular velocity, and distance to the target) to facilitate classification of the voxel data. The scope of this paper is confined to analyzing data size, scanning time required for accurate classification, and processing efficiency. Experimental data size, density, and classification performance results are presented.

목차

Abstract
I. INTRODUCTION
II. APPROACH
III. IMPLEMENTATION
IV. RESULTS
V. CONCLUSIONS
REFERENCE

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000939683