메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Reza Sobhani Ahmadgurabi (Islamic Azad University) Mohammad Ali Nekoui (K N T University of Technology) Karim Salahshoor (Petroleum University of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
227 - 230 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Predictive controller based on model has been known as a reliable and robust controller in the last 20 years. This paper presents a new idea of design and implementing an adaptive model predictive controller on an industrial "dynamic" and "nonlinear" plant in an integrated software environment using Hysys and Matlab packages. The model predictive controller formation is based on an adaptive state-space prediction model of the system response to obtain the control action by minimizing an objective function. The designed MPC controller is utilized to regulate a gaseous industrial plant, simulated in Hysys. The objective of controlling the plant is to compensate for the pressure variations in topside output of the vessel in on-line form. In this paper, the opening value percentage (OP) of a valve in the output is randomly excited in a given interval to identify the output pressure in the plant, called as Process Variable (PV). The predicted and desired outputs are then employed in the designed model predictive controller to determine the control actions in the prediction horizon. The simulation results obtained in the developed integrated Hysys-Matlab environment, demonstrate the capability of the proposed approach to efficiently monitor and control an industrial gaseous plant in a real and practical manner.

목차

Abstract
1. INTRODUCTION
2. PROCESS PLANT DESCRIPTION
3. THERMODYNAMIC MODEL OF THE PROCESS PLANT
4. MATLAB-HYSYS PROGRAMMING ENVIRONMENT
5. OBTAINED RESULTS OF SIMULATING THE PROCESS BY IMPLEMENT OAMPC
6. AN EXAMPLE TO ILLUSTRATE THE ISSUE
7. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000936980