메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Sousuke Nakamura (The University of Tokyo) Shimon Ajisaka (The University of Tokyo) Kiyoaki Takiguchi (The University of Tokyo) Akira Hirose (The University of Tokyo) Hideki Hashimoto (The University of Tokyo)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2010
발행연도
2010.10
수록면
109 - 114 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, a novel human position estimation system using electric-field resonance coupling is proposed. There are various advantages of using electric-field for human position estimation system. The system is robust to illumination change, body-worn tags are not required and sensors could be hidden since electric-field can path through an insulator. Tags are not required because the system estimates the position by measuring the electric field transmitted along the human body which acts as an electric-field coupler. Moreover, the proposed system has wider sensing range and higher expandability to position estimation of multiple humans compared to the current system. Unlike the current system which only measures the electric-field coupled between human and transmitter, the proposed system measures the electric-field amplified by the resonance occurring inside the human (equivalent to giant antenna) to achieve wider sensing range. Meanwhile, the proposed system is also designed carefully to maintain the expandability to multiple humans position estimation. Based on the simulation results, it is verified that the sensing range could be up to 50[cm] with less than 5[cm] error. In the future, the proposed system could be a powerful alternative for the current system.

목차

Abstract
1. INTRODUCTION
2. RELATED WORK
3. PROPOSED SYSTEM
4. BASIC THEORY AND EQUIVALENT CIRCUIT
5. BASIC EQUATION
6. SIMULATION
7. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000936733