메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Shota Nakashima (Kyushu Institute of Technology) Makoto Miyauchi (Kitakyushu College of Technology) Seiichi Serikawa (Kyushu Institute of Technology)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2008
발행연도
2008.10
수록면
2,782 - 2,786 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
An extraction of a specific figure in image has basic problems in intelligent image sensing. The generalized Hough transform (GHT) is the representative method to extract arbitrary figures which are rotated and enlarged or reduced. Many the improvement models were also proposed. However, for extraction of arbitrary figures, it takes much processing time and needs much memory space. In addition, it is impossible to apply the GHT to figures including branches. For an improvement of the problems, a new method to extract arbitrary figure using one-dimensional histogram is proposed in this study. The method utilizes the Polytope method which is one of minimization algorithms. For the extraction of figures, one-dimensional histogram is used. The histogram has two characteristics. (1) The distribution of histogram changes if the parameters representing figure changes. (2) The best parameters are gotten, if the value of most frequency of histogram becomes maximum. Therefore, by using the Polytope method, the best parameters are searched so that the maximum value of most frequency can be maximum. In comparison with conventional method, it is understood that memory space is very small, processing time is very short and figures including branches can be extracted. In addition, this method is effective for an extraction of arbitrary figure with different aspect ratio.

목차

Abstract
1. INTRODUCTION
2. EXTRACTION OF FIGURES USING ONE-DIMENSIONAL HISTOGRAM
3. EXPERIMENTAL EXTRACTION OF ARBITRARY FIGURE
3. DISCUSSION
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2014-569-000977954