메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
윤범식 (삼성전자) 김회율 (한양대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제51권 9호
발행연도
2014.9
수록면
119 - 128 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 이전 연구 방법에서의 UV-histogram을 확장하여 적응적 UV-histogram을 제시함으로써, 복잡한 구성의 장면에서 사람의 검출율을 높이는 방법을 제시한다. 제안 방법은 먼저 U-histogram에서 사람 영역을 1차 추출하고, 각각의 레이블링된 U에서 V-histogram을 생성함으로써, 이전 방법에서 구분할 수 없었던 사람 후보 영역을 정확하게 추출한다. 또한 제안 방법은 사람 판정시, 초점거리와 거리에 따라 적응적인 크기를 가지는 오메가 모양의 템플릿을 이용하여 검출의 정확도를 높였으며, 누적 영상을 이용하여 오검출을 템플릿 재매칭 함으로써, occlusion에도 강인한 특성을 가진다. 실험 결과는 Bae의 연구방법에 비하여 복잡한 환경에서 약 15%의 정확도 향상, 80%의 재현율 향상을 보이며, Xia의 연구방법에 비하여 20배 빠른 수행속도를 보여, 제안 방법의 성능이 우수함을 입증한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. 제안하는 방법
Ⅳ. 실험
Ⅴ. 결론
REFERENCES

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-002747379