메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
진재현 (순천대학교) 박정우 (한국과학기술원) 김부민 (경상대학교) 김병수 (경상대학교) 이은용 (국방과학연구소)
저널정보
제어로봇시스템학회 제어로봇시스템학회 논문지 제어로봇시스템학회 논문지 제15권 제8호
발행연도
2009.8
수록면
859 - 866 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The article discusses an issue of estimating the airspeed of an autonomous flying vehicle. Airspeed is the difference between ground speed and wind speed. It is desirable to know any two among the three speeds fur navigation, guidance and control of an autonomous vehicle. For example, ground speed and position are used to guide a vehicle to a target point and wind speed and airspeed are used to maximize flight performance such as a gliding range. However, the target vehicle has not an airspeed sensor but a ground speed sensor (OPS/INS). So airspeed or wind speed has to be estimated. Here, airspeed is to be estimated. A vehicle’s dynamics and its dynamic parameters are used to estimate airspeed with attitude and angular speed measurements. Kalman filter is used for the estimation. There are also two major sources arousing a robust estimation problem; wind speed and altitude. Wind speed and direction depend on weather conditions. Altitude changes as a vehicle glides down to the ground. For one reference altitude, multiple model Kalman filters are pre-designed based on several reference airspeeds. We call this group of filters as a cluster. Filters of a cluster are activated simultaneously and probabilities are calculated for each filter. The probability indicates how much a filter matches with measurements. The final airspeed estimate is calculated by summing all estimates multiplied by probabilities. As a vehicle glides down to the ground, other clusters that have been designed based on other reference altitudes are activated. Some numerical simulations verify that the proposed method is effective to estimate airspeed.

목차

Abstract
Ⅰ. 서론
Ⅱ. 비행체 동역학 및 문제정의
Ⅲ. 강인 상태추정 기법
Ⅳ. 시뮬레이션 및 성능 분석
Ⅵ. 결론
참고문헌
부록

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-003311669