메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
최아영 (광주과학기술원) 우운택 (광주과학기술원)
저널정보
한국HCI학회 한국HCI학회 학술대회 HCI 2009
발행연도
2009.2
수록면
173 - 177 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
일상생활에서 활용 가능한 다양한 종류의 생체 신호 획득 및 분석 방법이 연구되고 있다. 기존의 생체 신호 분석 방법은 표준화된 임계치를 사용하여 해석한 결과를 제공하며 신호 측정 당시의 상황이 고려되지 않아 잡음 혹은 외부 환경의 영향을 받기 쉬운 단점이 있다. 본 논문에서는 생체 신호뿐만 아니라 기타 정황정보를 기반으로 하여 개인화된 신호를 분석하기 위한 모델(Personalized Decision Making method, PDM)을 제안한다. 개인화된 신호해석 모델은 사용자의 맥락 정보, 사용자의 맥락 정보, 사용자의 나이, 성별, 현재의 몸 및 정신 상태, 음식 및 카페인의 섭취 여부, 측정 시간 및 측정 요일 등을 기반으로 각 맥락 간의 연관 관계를 나타내고, 이상적인 사용자의 생체 신호 예측치를 베이즈 정리를 기반으로 획득한다. 개인화된 해석 모델(ACM)을 통해 표준 임계치를 적용한 해석에 비해 인식의 정확도를 높일 수 있으며, 다양한 측정시의 조건을 알면 현재 사용자의 건강상태를 개인화된 분석과 유사한 정확도로 예측이 가능하다. 제안한 방법은 현재 관측된 관측치의 분포를 모르더라도, 현재 사용자의 상태를 맥락정보를 기반으로 하여 예측할 수 있으므로, 일반적인 데이터 모델을 기반으로 개개인에 맞는 얼굴 표정을 인식하는 연구 등에 활용이 가능하다.

목차

요약
Abstract
1. 서론
2. 맥락 기반의 개인화된 신호 해석 모델
3. 실험 및 분석
4. 결론 및 향후 과제
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0