메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이상화 (서원대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第49卷 CI編 第2號
발행연도
2012.3
수록면
115 - 122 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 CosGauss라고 하는 코사인함수로 모듈화 된 가우시안 활성화함수가 뉴로 네트워크에서 다항식과 계단함수의 근사에 사용될 수 있음을 증명한다. CosGauss 함수는 시그모이드, 하이퍼볼릭 탄젠트, 가우시안 활성화 함수보다 더 많은 범프(bump)를 구성 할 수 있다. 이 함수를 캐스케이드 코릴레이션 뉴로 네트워크 학습에 사용하여 벤치마크 문제인 Tic-Tac-Toe 게임과 아이리스(iris) 식물 문제와 실험하고 여기에서 얻어진 결과를 다른 활성화 함수를 사용한 결과와 비교 분석한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. CosGauss 함수의 동치(equivalence)
Ⅲ. 실험
Ⅳ. 결론
참고문헌
Appendix

참고문헌 (7)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-001696583