메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황의찬 (인하대학교) 민정웅 (인하대학교)
저널정보
한국해양수산개발원 해양정책연구 해양정책연구 제24권 제1호
발행연도
2009.6
수록면
1 - 25 (25page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
To improve the efficiency of logistics and ensure safe freight flow, a comprehensive set of supply chain security initiatives have been implemented and practiced throughout the world. Since such initiatives might become a trade barrier in the future, it is necessary to respond and correspond to the logistics security in a timely manner. However, research in this area is still lacking, especially quantitative research or surveys on local port facilities and ships. In this context, this study included the logistics companies (maritime shipping companies, container terminals) in Incheon Port as well as many logistics security experts in Korea in order to assess the security level of Incheon Port. Using AHP, this research derived the security items with respect to the importance level and their priorities.
The research result showed that each group posed different perception in terms of the importance level of security items. Overall, Incheon Port facilities were fairly managed for security but it needs considerable preparation for the item such as ‘cargo inspection and tracing,’ and ‘crisis management and disaster recovery & self assessment’ for further security enhancement.
The weighted priority value was calculated by multiplying the importance value of the specific items and the evaluation value of the preparation level. Based on this result, this paper suggests that the item ‘cargo inspection and tracing’ and ‘security training/program’ need to get prepared further for responding global supply chain security requirements.

목차

Abstract
Ⅰ. 연구의 배경 및 목적
Ⅱ. 물류보안 수준 평가모형 설계
Ⅲ. 인천항의 물류보안 수준 평가
Ⅳ. AHP를 이용한 보안항목 중요도 분석
Ⅴ. 결론
Acknowledgement
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-454-001646930