메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이명훈 (코난테크놀로지) 양형정 (전남대학교) 김수형 (전남대학교) 이귀상 (전남대학교) 김선희 (Carnegie Mellon University)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제12권 제2호
발행연도
2012.2
수록면
105 - 115 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 휴대폰 카메라를 통해 간판영상의 한글문자를 인식한 후 오인식 된 결과를 교정하는 방법으로 인식 후보를 음소단위 분할하고 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance(wDLD)를 제안한다. 제안된 방법은 인식된 문자열을 음소 단위로 분할한 후 입력 형태의 거리값을 산출하여, 가장 유사한 상호명을 데이터베이스에서 검출 한다. 제안된 방법의 효율성을 검증하기 위해, 전국의 상호명 중 중복되는 상호명을 제거한 130만개의 상호명을 이용하여 데이터베이스 사전을 구축하였다. 또한 대표적인 문자열 비교 알고리즘인 Levenshtein Distance와 음소를 분할하여 적용한 Disassemble Levenshtein Distance 방법, 그리고 본 논문에서 제안한 인식 후보의 음소 단위 분할 방법과 연산 가중치를 적용한 weighted Disassemble Levenshtein Distance의 교정율을 비교 분석 하였다. 그 결과 제안된 weighted Disassemble Levenshtein Distance(wDLD)은 Levenshtein Distance와 Disassemble Levenshtein Distance방법에 비해 각각 평균 29.85%와 6%의 인식률의 향상을 보였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련연구
Ⅲ. wDLD: weighted Disassemble Levenshtein Distance
Ⅳ. 실험 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (19)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-004-001515645