메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
염재현 (포항공과대학교) 박현규 (포항공과대학교) 이현석 (포항공과대학교) 진희철 (포항공과대학교) 김효태 (포항공과대학교) 김경태 (포항공과대학교)
저널정보
한국전자파학회 한국전자파학회논문지 韓國電磁波學會論文誌 第23卷 第2號
발행연도
2012.2
수록면
169 - 176 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 전계 적분 방정식 (Electric Field Integral Equation: EFIE)을 사용하는 모멘트 법의 저주파 오차(low frequency breakdown) 문제를 해결하기 위한 방법으로 루프-스타(loop-star) 기저 함수를 사용하였다. 또한, 모멘트 법의 해를 계산하기 위하여 conjugate gradient method(CGM)과 같은 반복법을 적용할 경우 반복 횟수를 줄이기 위한 기법으로 p-Type Multiplicative Schwarz preconditioner(pMUS)를 이용하였다. 헬름홀쯔 정리(Helmholtz theorem)에 기반한 루프-스타(loop-star) 기저 함수와 주파수 정규화 기법을 이용하여 전계 적분 방정식에서
Rao-Wilton-Glisson(RWG) 기저 함수를 사용하였을 때 발생하는 저주파 오차(low frequency instability) 문제를 해결할 수 있다. 하지만, RWG 기저 함수를 비발산(solenoidal) 성분과 비회전성(irroatational) 성분으로 분해함으로써 발생하는 행렬 방정식의 높은 조건 수(condition number)로 인하여 CGM과 같은 반복법을 사용할 경우 해를 계산하기 위하여 많은 반복 횟수가 요구된다. 본 논문에서는 이러한 문제점을 해결하기 위한 방안으로 pMUS 전제 조건 기법을 이용하여 CGM의 반복 횟수를 줄였다. 수치 해석 결과, pMUS와 같은 희소성(sparsity)을 가진 블럭 대각 전제 조건(Block Diagonal Precondtioner: BDP)과 비교하였을 때 pMUS는 BDP보다 빠르게 해를 계산할 수 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 수치 해석 결과
Ⅳ. 결론
참고문헌

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-427-001510418