메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jin Keun Seo (연세대학교)
저널정보
한국산업응용수학회 한국산업응용수학회 학술대회 논문집 한국산업응용수학회 학술대회 논문집 Vol.6 No.1
발행연도
2011.5
수록면
11 - 17 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Last two decades, much researches in biomedical imaging area deal with electromagnetic or mechanical property imaging instead of anatomical imaging since they manifest structural and pathological conditions of the tissue providing valuable diagnostic information. The corresponding objectives are in visualizing cross-sectional image reconstructions of admittivity, susceptibility, shear modulus distributions inside the human body. These electromagnetic or mechanical property imaging modalities belong to interdisciplinary research areas incorporating mathematical theories (PDEs, harmonic analysis, micro-local analysis), inverse problems and image reconstruction algorithms, image processing (denoising, segmentation, compressed sensing), numerical analysis and error estimates, MR physics and experimental techniques. To achieve these objectives, we need to set up a mathematical framework using the constitutive relation, related physical principles (electromagnetism, elasticity), and available measurement techniques, and it must be taken into account the well-posedness (uniqueness, existence, stability) and uncertainties in boundary conditions and material characterizations. It is often necessary to make various simplifications of reality with sacrificing physical details so that the simplified model is manageable and holds key information to be aimed. In this talk, we discuss these subjects from its mathematical framework to most recent outcomes. We present future directions and challenging issues in mathematics.

목차

ABSTRACT
1. INTRODUCTION
2. MATHEMATICAL FRAMEWORK
REFERENCES

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-410-000694861