메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
김동호 (한국과학기술원) 이재송 (한국과학기술원) 김기응 (한국과학기술원) Pascal Poupart (Univ. of Waterloo)
저널정보
Korean Institute of Information Scientists and Engineers 한국정보과학회 학술발표논문집 한국정보과학회 2011한국컴퓨터종합학술대회 논문집 제38권 제1호(A)
발행연도
2011.6
수록면
286 - 289 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
제약을 갖는 부분 관찰 의사결정 과정(Constrained Partially Observable Markov Decision Process; CPOMDP)는 정책이 제약(constraint)를 만족하면서 가치 함수를 최적화하도록 일반적인 부분 관찰 의사결정과정(POMDP)을 확장한 모델이다. CPOMDP는 제한된 자원을 가지거나 여러 개의 목적 함수를 가지는 문제를 자연스럽게 모델링할 수 있기 때문에 일반적인 POMDP에 비해 더 실용적인 장점을 가진다. 본 논문에서는 CPOMDP의 확률적 최적 정책 및 근사 최적 정책을 계산할 수 있는 최적 및 근사 동적 프로그래밍 알고리즘을 제안한다. 최적 알고리즘은 동적 프로그래밍의 각 단계마다 미니맥스 이차 제약 계획 문제를 계산해야하는 반면에 근사 알고리즘은 선형 계획 문제만을 필요로 하는 점-기반(point-based) 가치 업데이트를 이용한다. 실험 결과, 확률적 정책이 결정적(deterministic) 정책보다 더 나은 성능을 보이며, 근사 알고리즘을 통해 계산 시간을 줄일 수 있음을 보였다.

목차

요약
1. 서론
2. Constrained POMDP
3. CPOMDP를 위한 최적 정책 알고리즘
4. CPOMDP를 위한 근사 정책 알고리즘
5. 실험 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2013-569-000677344