메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
저널정보
한국멀티미디어학회 한국멀티미디어학회 국제학술대회 MITA 2006
발행연도
2006.7
수록면
572 - 576 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
In this paper, we proposed using MFCC coefficients (Mel-Scaled Cepstral Coefficients) and a simple but efficient classifying method. Many other features: IAV, zero crossing, LPC... and their derivatives are also tested and compared with MFCC coefficients in order to find the best combination. GMM and HMM (Discrete and Continuous Hidden Markov Model), are studied as well in the hope that the use of continuous distribution and the temporal evolution of this set of features will improve the quality of emotion recognition. Other models, cascaded multilayer perceptrons (MLP's) and HMM's hybrid classifier is also proposed to classify continuous EMG signals. In the field of prosthetic arm control, the pattern classification of the EMG the estimation of force from collected EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why we estimate the force from the EMG signal. In this paper, when we handle the EMG signal to estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation which is used in the force estimation process the transformed signal is input into the classifier for pattern classification.

목차

Abstract
Ⅰ. INTRODUCTION
Ⅱ. METHODS
Ⅲ. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004247744