메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신성식 (전북대학교) 권오봉 (전북대학교)
저널정보
대한전자공학회 전자공학회논문지-CI 電子工學會論文誌 第48卷 CI編 第2號
발행연도
2011.3
수록면
47 - 54 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 한 장의 이미지에서 학습을 통하여 영역 별 깊이 정보를 추정할 때 사용되는 특징 정보를 유전 알고리즘(Genetic Algorithm)을 기반으로 축소하고 깊이 정보 추정 시간을 단축하는 방법에 대해서 기술 한다. 깊이 정보는 이미지의 에너지 값과 텍스쳐의 기울기 등을 특징으로 생성하여 특징들의 관계를 기반으로 추정 된다. 이 때 사용되는 특징의 차원이 크기 때문에 연산시간이 증가하고 특징의 중요성을 판단하지 않고 사용하여 오히려 성능에 나쁜 영향을 미치기도 한다. 이에 따라 중요성을 판단하여 특징의 차원을 줄일 필요가 있다. 본 논문에서 제안한 방법을 미국 스탠포드(Stanford)대학에서 제공하는 벤치마크 데이터로 실험한 결과, 특징의 추출과 깊이 추정 연산 시간이 모든 특징을 사용하는 방법에 비하여 약 60%정도 향상되고 정확도가 평균 0.4%에서 최대 2.5% 향상 되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 특징 벡터 추출 및 생성
Ⅲ. 특징 공간 축소
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (13)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004187312