메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장경환 (연세대학교) 유태근 (연세대학교) 남기창 (연세대학교) 최재림 (연세대학교) 권민경 (연세대학교) 김덕원 (연세대학교)
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第48卷 SC編 第2號
발행연도
2011.3
수록면
47 - 55 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
전 세계적으로 상해로 인한 사망자 중 1/3의 직접적인 사망 원인은 출혈성 쇼크이다. 그러나 초기 쇼크에서 이를 정확히 예측할 수 있다면 신속한 치료가 가능하여 그 피해를 줄일 수 있다. 본 논문의 목적은 흰쥐의 대퇴부정맥을 통해 일정량의 출혈을 시키면서 변화하는 생리적 변수인 심박수, 수축기 혈압, 평균 동맥압, 호흡수, 체온 데이터로 최적의 생존 예측 모델을 제시하여 출혈성 쇼크를 조기 진단하는 것이다. 예측 모델로는 최근 많이 연구되는 인공신경망과 지원벡터기계 방법을 사용하였다. 과대적합을 피하고 최적의 모델을 선정하기 위해 10-fold cross validation을 수행하였을 때, 인공신경망의 경우 은닉노드 수가 3개인 모델이 가장 우수한 성능을 보였고, 지원벡터기계에서는 가우시안 커널함수를 이용한 모델이 가장 우수한 성능을 보였다. 평가 데이터 세트를 이용하여 각각의 생존 예측 모델을 평가한 결과 인공신경망의 경우 민감도 88.9 %, 특이도 96.7 %와 정확도 92.0 %를 보였고, 지원벡터기계의 경우 민감도 97.8 %, 특이도 95.0 %와 정확도 96.7 %를 보였다. 따라서 출혈에 따른 흰쥐의 생존 예측에서 지원벡터기계가 인공신경망보다 더 우수한 성능을 보이는 것을 확인하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 방법
Ⅲ. 실험 및 결과
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (21)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004207206