메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창주 (동양미래대학교) 손병희 (동양미래대학교) 홍희식 (동양미래대학교)
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제38권 제12호(네트워크 및 서비스)
발행연도
2013.12
수록면
954 - 961 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 퍼지ART의 학습 방법의 하나인 FCSR(Fast Commit Slow Recode)에서 패턴 인식을 향상시키기 위해 가변 학습을 이용하는 새로운 학습방법을 제안하였다. 기존의 학습 방법은 연결 강도(대표패턴)의 갱신에 고정된 학습률이 사용된다. 이 방법은 같은 카테고리 내의 입력패턴과 대표패턴의 유사성의 정도와 관계없이 고정된 학습률로 연결 강도를 갱신한다. 이 경우 카테고리 경계에 있는 유사성이 낮은 입력패턴이 연결강도의 갱신에 크게 영향을 주게 된다. 따라서 잡음 환경에서 이것은 불필요한 카테고리 증식의 원인이 되고, 패턴 인식 능력을 낮추는 문제가 된다. 제안된 방법에서는 대표 패턴과 입력 패턴 사이에 유사성이 적을수록 연결강도의 갱신에 입력 패턴의 기여를 낮추어간다. 그 결과 잡음환경에서 퍼지 ART의 불필요한 카테고리 증식을 억제하였고, 패턴 인식 능력을 향상시켰다.

목차

요약
ABSTRACT
Ⅰ. 서론
Ⅱ. 퍼지 ART
Ⅲ. 가변 학습을 적용한 퍼지 ART
Ⅳ. 실험 결과 및 분석
Ⅴ. 결론
References

참고문헌 (11)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001059890