메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이영학 (영남대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제11권 제11호
발행연도
2008.11
수록면
1,501 - 1,514 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
김이 값에 따른 얼굴의 형상은 사랑의 특징을 나타내는 중요한 요소 중의 하나로서 각 사람마다 다른 모양을 기지고 있다. 다른 형상을 가진 얼굴 영상으로부터 분리한 주파수 성분은 동일 얼굴에 대한 또 다른 중요 특징 성분의 하나가 될 수 있다. 본 논문은 3차원 얼굴 영상에서 등고선 값을 따라 추출된 영역에 대하여 각 영역별로 주파수 분리를 이용하여 특징을 추출한다. 그리고 이 주파수에 대한 수정된 퍼지 군집화를 적용한 얼굴 인식 알고리즘을 제안한다. 먼저 객체와 배경을 분리하여 얼굴을 추출한 후 얼굴에서 가장 두드러진 형태인 코끝을 찾는다. 이를 이용하여 회전된 얼굴에 대해 정규화를 실시한다. 얼굴의 등고선 영역은 코끝을 기준으로 깊이 값에 따라 영역이 추출되며 이는 사람마디 서로 다른 형상 특징을 가진다. 등고선에 따라 획득된 3차원 얼굴 영성으로부터 이산 웨이블릿 변환을 이용하여 4가지의 주파수 성분을 추출하여 특정정보로 사용한다. 각각의 웨이블릿 주파수 성분을 추출한 등고선 영역에 대해 차원의 감소를 위하여 고유얼굴 추출과 특징 공간상에서 클래스간의 분리를 최대화시키기 위해 선형 판별 분석 알고리즘을 이용하여 유사도를 비교하였다. 본 논문에서는 클래스간의 분별 정보를 향상시키고자 각각의 등고선 영역과 각 영역의 주파수별로 수정된 퍼지 군집화 알고리즘을 적용하여 인식률을 향상 시켰으며, 코끝으로부터 깊이 값이 60인 영역의 경우 98.3%의 인식률을 나타내었다.

목차

요약
ABSTRACT
1. 서론
2. 코끝 점 추출과 정규화
3. 웨이블릿 변환 및 차원축소
4. FCM 군집화(fuzzy c-means cluster)
5. 실험 및 결과
6. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004432618