메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장형종 (경원대학교) 임준식 (경원대학교)
저널정보
한국멀티미디어학회 멀티미디어학회논문지 멀티미디어학회논문지 제12권 제3호
발행연도
2009.3
수록면
451 - 459 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문은 심전도(ECG) 신호로부터 조기심실수축(PVC)을 자동 탐지하는 방법으로 이산 웨이블릿 변환과 퍼지 신경망을 이용하는 방안을 제시하고 있다. 심전도 신호를 이산 웨이블릿 변환(DWT)으로 특징을 추출한 후, 퍼지 신경망으로 학습하여 정상 비트와 PVC 비트를 분류한다. 윈도우 크기는 R파를 기준으로 -31/360 ~+32/360초를 사용하며, 웨이블릿 변환은 d3, d4, d5의 웨이블릿 계수 14개를 사용한다. 퍼지 신경망은 가중 퍼지소속함수 기반 신경망을 사용한다. 본 논문은 벤치마킹 데이터로 MIT-BIH 부정맥 데이터베이스를 사용하여 Shyu 실험군(7개 레코드)에서는 전체 분류율에서 97.04% 보다 높은 99.91%의 신뢰성 있는 결과를 나타내었고, Inan 실험군(40개 레코드)에서는 각각 SE는 82.57% 보다 높은 84.67%, SP는 98.33% 보다 높은 99.39%, 전체 분류율은 96.85% 보다 높은 98.01%의 신뢰성 있는 결과를 나타내었다.

목차

요약
ABSTRACT
1. 서론
2. 관련 연구
3. 조기심실수축 진단 알고리즘
4. 실험 및 결과 분석
5. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004431055