메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신효정 (성균관대학교) 최돈정 (성균관대학교) 김보경 (성균관대학교) 윤태복 (성균관대학교) 이지형 (성균관대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제6호
발행연도
2010.12
수록면
761 - 767 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
낸드 플래시 메모리는 블록에 새로운 데이터를 쓰고자 할 때 삭제 연산이 선행되어야 하며 일정 횟수 이상 지움 연산이 반복된 블록은 더 이상 사용이 불가능하다. 데이터의 갱신이 빈번한 핫 데이터는 블록을 빠르게 사용 불가능한 상태에 도달하게 만들 수 있고 이로써 낸드 플래시 메모리의 용량은 시간이 지남에 따라 감소할 수 있다. 본 논문에서는 데이터의 접근 패턴을 고려해 핫 데이터와 콜드 데이터를 분류하는 알고리즘을 제시한다. 이렇게 분류된 데이터 정보를 이용해 삭제횟수가 많은 블록에 갱신 확률이 적은 콜드 데이터를, 삭제 횟수가 상대적으로 적은 블록에 갱신 확률이 높은 핫 데이터를 맵핑한다. 입력 데이터 패턴을 이용한 핫/콜드 데이터 분류 기법이 기존의 분류 기법을 사용했을 때보다 플래시 메모리의 블록 사용이 균일한 것을 실험을 통해 확인하였다.

목차

요약
Abstract
1. 서론
2. 기반 연구
3. 핫/콜드 데이터 분류를 통한 메모리 사용 균일화 정책
4. 실험 및 평가
5. 결론 및 향후 연구
참고문헌
저자소개

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-028-003781527