메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
황인성 (인하대학교) 정경용 (상지대학교) 임기욱 (선문대학교) 이정현 (인하대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제10권 제10호
발행연도
2010.10
수록면
78 - 85 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Map/Reduce 는 최근에 많은 주목을 받고 있는 클라우드 컴퓨팅을 구현하는 프로그래밍 모델이다. 이 모델은 여러 대의 컴퓨터를 이용해서 규모가 큰 데이터를 처리하는 어플리케이션에서 사용된다. 따라서 구성된 컴퓨터들을 효율적으로 사용하기 위해서 데이터를 적당한 크기로 나눈 다음 각각의 컴퓨터에 효율적으로 분배시키는 과정을 결정하는 것이 중요하다. 또한 모델을 구성하고 있는 Map 단계와 Reduce 단계를 실행하는 계획도 성능에 많은 영향을 줄 수 있다. 본 논문에서는 대용량의 데이터를 분리해서 Map 태스크를 실행하는 클라우드 컴퓨팅 노드의 성능과 네트워크의 상태를 고려한 후 각각의 컴퓨팅 노드에게 효율적으로 분배하는 방법을 제안한다. 그리고 Map 단계와 Reduce 단계에서 진행하는 방식을 튜닝하여 Reduce 작업의 처리속도를 향상시켰다. 제안된 방법은 대표적인 두 개의 Map/Reduce 어플리케이션을 이용하여 실험하고 조건에 따라 성능에 어떠한 결과를 미치는지 평가했다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. Map/Reduce와 Hadoop
Ⅳ. 데이터 분배 및 진행 디자인
Ⅴ. 구현
Ⅵ. 실험 및 평가
Ⅶ. 결론 및 향후연구
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-003594595