메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이창용 (공주대학교) 이동주 (공주대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제37권 제8호
발행연도
2010.8
수록면
591 - 598 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 연속형 최적화 문제를 위한 타부 탐색에서 후보 해를 생성하기 위해 사용되는 정규 분포의 단점을 보완하기 위하여 코시 확률 분포에 기초한 후보 해 생성 방법을 제안하였다. 코시 확률 분포는 평균 및 분산 등이 무한대인 확률 분포이며, 분포의 꼬리 부분의 확률이 정규 분포에 비하여 상대적으로 크다. 따라서 코시 분포를 사용하면 변수의 변화가 큰 후보 해가 생성될 확률이 높기 때문에 보다 넓은 변수 공간을 탐색할 수 있는 장점이 있다. 코시 확률 분포를 사용한 타부 탐색의 성능을 기존의 정규 분포를 사용한 방법과 비교 분석하기 위하여 실변수 함수로 구성된 벤치마킹 문제에 적용하여 실험을 실행하였다. 실험 결과를 통해 볼 때, 실험에 사용한 모든 함수에 대하여 코시 분포를 사용한 방법이 보다 나은 결과를 나타냈으며, 또한 통계적 가설 검정을 통하여 코시 확률 분포의 우수성을 입증하였다.

목차

요약
Abstract
1. 서론
2. 코시 확률 분포와 평균 변화율
3. 타부 탐색 알고리즘
4. 실험 결과 및 분석
5. 요약 및 결론
참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002736162