메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Hakim BAHA (University of Batna Algeria) DIBI Zohir (University of Batna Algeria)
저널정보
대한전기학회 Journal of Electrical Engineering & Technology Journal of Electrical Engineering & Technology Vol.5 No.3
발행연도
2010.9
수록면
493 - 496 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
At present, Metal Oxide gas Sensors (MOXs) are widely used in gas detection because of its advantages, including high sensitivity and low cost. However, MOX presents well-known problems, including lack of selectivity and environment effect, which has motivated studies on different measurement strategies and signal-processing algorithms. In this paper, we present an artificial neural network (ANN) that models an MOX sensor (TGS822) used in a dynamic environment. This model takes into account dependence in relative humidity and in gas nature. Using MATLAB interface in the design phase and optimization, the proposed model is implemented as a component in an electronic simulator library and accurately expressed the nonlinear character of the response and that its dependence on temperature and relative humidity were higher than gas nature.

목차

Abstract
1. Introduction
2. Characteristics of the Sensor
3. Neural Networks Model
4. Conclusion
References

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-002797288