메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
오상훈 (목원대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제10권 제6호
발행연도
2010.6
수록면
166 - 174 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다층퍼셉트론이 충분한 중간층 노드 수를 지니면 임의의 함수를 근사시킬 수 있다는 이론적 연구결과에 기초하여, 다층퍼셉트론을 실제 문제에 응용하는 경우에 일반적으로 입력층, 중간층, 출력층으로 이루어진 3층 구조의 다층퍼셉트론을 사용한다. 그렇지만, 이러한 구조의 다층퍼셉트론은 입력벡터가 여러 가지 성질로 이루어진 복잡한 문제의 경우 좋은 일반화 성능을 보이지 않는다. 이 논문에서는 입력 벡터가 여러 가지 정보를 지닌 데이터들로 구성되어 있는 문제인 경우에 계층적 구조를 지닌 다층퍼셉트론의 구성으로 성능을 향상시키는 방법을 제안한다. 즉, 입력데이터를 섭-벡터로 구분한 후 섭-벡터별로 다층퍼셉트론을 적용시키며, 이 섭-벡터별로 적용된 하위층 다층퍼셉트론으로부터 인식 결과를 받아서 최종 결정을 하는 상위 다층퍼셉트론을 구현한다. 제안한 방법의 효용성은 단백질의 구조를 예측하는 문제를 통하여 확인한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 일반적인 구조의 MLP와 학습방법
Ⅲ. 계층적 구조를 지닌 MLP
Ⅳ. 시뮬레이션
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-004-002433120