메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
魏永民 (고려대학교) 宋敬彬 (숭실대학교) 朱成官 (고려대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제58권 제1호
발행연도
2009.1
수록면
18 - 22 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Short-term load forecasting (STLF) is an important task in power system planning and operation. Its accuracy affects the reliability and economic operation of power systems. STLF is to be classified into load forecasting for weekdays, weekends, and holidays. Due to the limited historical data available, it is more difficult to accurately forecast load for holidays than to forecast load for weekdays and weekends. It has been recognized that the forecasting errors for holidays are large compared with those for weekdays in Korea. This paper presents a polynomial regression with data mining technique to forecast load for holidays. In statistics, a polynomial is widely used in situations where the response is curvilinear, because even complex nonlinear relationships can be adequately modeled by polynomials over a reasonably small range of the dependent variables. In the paper, the coefficient of determination is proposed as a selection criterion for screening weekday data used in holiday load forecasting. A numerical example is presented to validate the effectiveness of the proposed holiday load forecasting method.

목차

Abstract
1. 서론
2. 본론
3. 결론
감사의 글
참고문헌
저자소개

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-560-002245527