메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최정환 (삼성전자) 류상현 (성균관대학교) 장현수 (성균관대학교) 엄영익 (성균관대학교)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 소프트웨어 및 응용 정보과학회논문지 : 소프트웨어 및 응용 제37권 제3호
발행연도
2010.3
수록면
185 - 193 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 유비쿼터스 시대의 도래와 함께 개인화된 서비스를 제공하기 위한 다양한 서비스 모델들이 제안되어 왔으며, 특히, 사용자에게 개인화된 서비스를 선응적으로 제공하기 위한 다양한 추천 서비스 기법들이 고안되었다. 그러나, 기존의 기법들은 수 많은 데이터를 여과 과정 없이 분석함으로써 추천의 효율성이 떨어지며, 한정된 상황 인지 정보만을 추천 요소로 고려하기 때문에 사용자에게 개인화된 서비스를 제공하기에 적합하지 않다. 본 논문에서는 유비쿼터스 환경에서 사용자의 현재 상황에 가장 적합한 서비스를 제공하는 적응형 추천 서비스 기법을 제안한다. 본 기법은 사용자의 선호도 예측을 위해 누적된 사용자와 장치 간의 상호작용 상황 정보들을 이용하며, 군집 및 협업 필터링 기법을 이용하여 사용자에게 현재 상황에 적응적인 서비스를 추천한다. 군집 기법을 통해 사용자의 현재 위치에 근접한 데이터만을 분석함으로써, 추천의 효율성을 높이며, 협업 필터링을 이용하여 누적된 정보들이 충분하지 않은 상황에서도 정확한 추천을 보장한다. 끝으로, 시뮬레이션을 통해 본 기법의 성능 및 신뢰성을 평가한다.

목차

요약
Abstract
1. 서론
2. 유비쿼터스 환경의 추천자 시스템
3. 적응형 추천 서비스 설계
4. 시뮬레이션 및 성능 평가
5. 결론
참고문헌

참고문헌 (19)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-569-002229837