메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박진일 (충북대학교) 정지석 (충북대학교) 조영임 (수원대학교) 전명근 (충북대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제4호
발행연도
2009.8
수록면
574 - 579 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
복잡한 비선형 회귀문제들에서 최적의 신경망을 구축하기 위해서는 구조의 선정 및 노이즈에 의한 과잉학습(overtraining) 등에 따른 많은 문제들이 있다. 본 논문에서는 flexible incremental 알고리즘을 이용하여 단계적으로 최적의 신경망을 구축하는 방법을 제안한다. Flexible incremental 알고리즘은 예측 잔류오차를 최소화하기 위해 단계적으로 추가되어지는 은닉노드 개수를 검증데이터를 이용하여 신축성 있게 조절하고, 빠른 학습을 위하여 ELM (Extreme Learning Machine)을 이용한다. 제안된 방법은 신경망의 구축과정에서 사용자의 어떠한 관여 없이도 빠른 학습과 적은 수의 은닉노드들에 의한 범용 근사화 (universal approximation)가 가능한 신경망의 구축이 가능한 장점을 가지고 있다. 다양한 종류의 벤치마크 데이터들을 이용한 실험 결과를 통하여 제안된 방법이 실제 회귀문제들에서 우수한 성능을 가짐을 확인하였다.

목차

요약
Abstract
1. 서론
2. ELM을 이용한 단일 은닉층을 가지는 전방향 신경망의 증분 알고리즘
3. Flexible incremental 알고리즘을 이용한 신경망의 단계적 구축방법
4. 실험 및 결과 고찰
5. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-018931861