메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
조재훈 (충북대학교) 박진일 (충북대학교) 이대종 (충북대학교) 전명근 (충북대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제19권 제3호
발행연도
2009.6
수록면
297 - 303 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 비선형 변환에 의해 입력신호를 고차원의 확장공간으로 변환한 후, 주성분분석기법(PCA)에 의해 신호의 특징을 추출하는 기법을 제안한다. 특징추출을 위해 사용되는 기존의 주성분분석기법은 입력데이터가 비선형 특성을 갖는 경우 최적의 변환행렬을 구할 수 없다는 문제점을 가지고 있다. 이러한 문제점을 해결하기 위해, 확장공간상에서 구간별로 입력데이터를 분할한 후 주성분분석기법에 의해 구간별 특징을 추출하는 서브패턴기반 주성분분석기법(SpPCA)을 적용하였다. 다음 단계인 분류단계에서는 MLP 비선형분류기를 이용하여 구간마다 추출된 특징벡터를 이용하여 기준패턴과의 유사도를 산출한다. 최종 분류단계에서는 MLP에 의해서 산출된 유사도에 기반을 둔 융합법칙에 의하여 생체 스펙트럼 패턴을 분류한다. 제안된 방법의 유용성을 보이기 위한 실험결과에서 기존의 방법들에 비해서 향상된 인식결과를 보임을 확인하였다.

목차

요약
Abstract
1. 서론
2. 확장공간에서 부 패턴 특징 추출 및 융합기법
3. 실험 결과
4. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-018832203