메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第46卷 第4號
발행연도
2009.7
수록면
58 - 66 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 경량화 비디오 부호화를 위함 분산 비디오 부호화 기술 (DVC: Distributed Video Coding)에 대한 연구가 활발히 이루어지고 있으며, Wyner-Ziv 부호화 기술은 이의 대표적인 기술로써 각광받고 있다. Wyner-Ziv (WZ) 부호화기는, 영상을, 기존의 인트라 부호화기를 이용하는 키 (Key) 프레임과 WZ 부호화를 하는 WZ 프레임으로 나누어 독립적으로 부호화 한다. WZ 복호화기로 전송된 키 프레임은 복원된 뒤 키 프레임 사이의 WZ 프레임을 추정하는데 사용되며 추정된 WZ 프레임을 보조정보 (Side Information)라고 한다. 보조정보는 WZ 프레임에 대한 정보가 없는 상태에서 추정되므로 필연적으로 WZ 프레임과 다르며 WZ 복호화기에서는 보조정보와 WZ 프레임과의 차이를 가상의 채널 잡음으로 간주한다. WZ 복호화 과정은 가상의 채널잡음을 WZ 복호화기 내에 존재하는 채널코드를 이용하여 제거함으로써 이루어지므로 채널 정보를 정확히 아는 것은 채널코드의 에러정정능력에 큰 영향을 미친다. WZ 복호화기에서는 추정된 WZ 영상만이 존재하므로 정확한 잡음의 양을 알 수 없으며, 일반적으로 선형 움직임에 근거한 키 프레임 간의 차를 하나의 예측 수단으로 사용한다. 또한 이와 같이 예측이 갖는 불확실성으로 채널코드의 효율이 저하되는 것을 막기 위하여 주변의 잡음과 비교를 통한 잘못된 잡음을 정정하는 방법도 제안되었다. 하지만 이런 방법들이 모든 프레임이나 비트 플레인에 존재하는 잡음을 제대로 측정한다고 할 수는 없다. 따라서 본 논문에서는 여러 개의 후보 잡음 모델을 생성한 후, 복호화 과정에서 가장 효율적인 모델을 선택하는 방법을 제안한다. 제안 방법에 대한 실험결과는 최대 0.8 dB의 PSNR이득을 보여준다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 잡음 모델 선택기반 변환영역 WZ 부호화 방법
Ⅲ. 제안하는 잡음 모델 선택
Ⅳ. 실험 및 결과
Ⅴ. 결론
참고문헌
저자소개

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018560222