메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 구조계 大韓建築學會論文集 構造系 第19卷 第5號
발행연도
2003.5
수록면
3 - 10 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Genetic algorithms(GAs) are adaptable to discrete and constrained problems and do not require continuity, unimodality, and derivatives of function. But GAs have a demerit of late convergence, which means to be examined many individuals until find the best individual. And especially much time is required to compute the constraints of an individual in large scale or nonlinear structural problem. So it needs to be developed the genetic algorithm to converges fast in small population.
Although the selected algorithm is superior, it's performance could be very fluctuate depending on search space. And it is possible to vary and adapt the algorithm to a placed circumstance. Therefore it is very important for user to create more efficient algorithm.
In this paper, micro genetic algorithm effective in small population size is used to save computing time in size optimization of geometrically nonlinear space truss. But in practical structural size optimization problem, many design variables are needed and search space is very complicated. Also optimum solutions exist at the corner (boundaries between feasible and infeasible regions) of the search space. In this case, micro GAs exist so far are liable to fall into dead corner and some genetic operators of those do not work well because the outcomes of the operator are apt to be infeasible. To cope with these problem it is proposed to reduce the intensity of penalty in order to extend the boundaries of search space and to use the hybrid genetic algolithm by gradient-like-selector to converge fast and avoid the genetic drift as a result of copies.

목차

Abstract
1. 서론
2. 유전알고리즘
3. 구조체의 크기 최적화
4. 최적설계 적용
5. 결론
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-018423936