메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SC 電子工學會論文誌 第46卷 SC編 第3號
발행연도
2009.5
수록면
52 - 58 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
칼만 필터는 이동 목표물의 운동 상태 특성이 선형이라고 가정할 경우 비교적 정확하게 표적의 위치를 추정할 수 있는 알고리즘으로 목표물의 운동 상태 특성이 얼마나 정확하게 모형화 되었느냐에 따라 성능이 좌우된다. 표적의 다양성을 고려하지 않고 운동 특성을 일반적으로 모형화 하여 칼만필터(SKF : Simple Kalman filter) 알고리즘을 적용하는 경우 표적이 갑작스런 기동을 하게 되면 칼만필터의 고정된 프로세스 잡음 분산은 기동을 다룰 수 없게 되므로 추적 성능은 현저히 저하된다. 본 논문에서는 이러한 문제점을 해결하기 위해 표적의 기동에 따른 프로세스 잡음 분산을 능동적으로 변화시켜 적용할 수 있는 능동형 칼만필터(AKF : Active Kalman filter)를 구현하였다. 즉 표적이 가질 수 있는 기동의 범위를 구분하여 설정하고 기동의 정도에 따라 표적을 추적할 수 있는 칼만필터 프로세스 잡음 분산을 구하여 기동 정도에 따른 칼만필터 프로세스 잡음 분산을 오프 라인(off-line)에서 선행 학습시켰다. 선행 학습은 뉴럴네트워크를 이용하여 표적의 기동 상태에 따른 시스템 프로세스 잡음 분산을 인식하도록 하였으며, 그 결과에 따라 레이더가 실제 표적 탐지 및 추적 처리시 칼만필터의 프로세스 잡음 분산을 선택하여 실시간으로 반영할 수 있도록 능동형 칼만필터(AKF : Active Kalman filter)를 구현하고 시뮬레이션을 통해 성능 개선을 입증하였다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 시뮬레이션
Ⅳ. 결론
참고문헌
저자소개

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-569-018363609