메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한전자공학회 전자공학회논문지-SP 電子工學會論文誌 SP編 第46卷 第2號
발행연도
2009.3
수록면
78 - 88 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
본 논문에서는 LDA를 이용한 얼굴 인식에서 발생하는 small sample size 문제를 해결하기 위한 효율적인 방법인 resampling 방법을 제안한다. 기존에는 regularization method를 사용하여 small sample size 문제를 해결하였는데, 이 방법을 사용하면 클래스내 분산행렬의 특이성을 없앨 수 있지만, 클래스내 분산행렬과 상수를 곱하는 과정에서 상수 값을 임의로 정해 주어야 하고, 이 상수 값에 따라 인식률이 개선되지 않을 수 있다는 문제점이 발생한다. 제안된 resampling 방법을 이용하여 학습 데이터의 수를 늘리면, regularization method보다 개선된 인식률을 얻을 수 있고, 또한 경험적으로 상수 값을 지정해 주는 과정을 거치지 않아도 되는 장점이 있다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 얼굴 인식과 Small Sample Size 문제
Ⅲ. Resampling 방법과 인식률 향상의 이론적 검토
Ⅳ. Resampling 방법의 인식률 향상의 이론적 검토
Ⅴ. 실험
Ⅵ. 결론
참고문헌
저자소개

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0