메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
박래정 (강릉원주대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제4호
발행연도
2010.8
수록면
534 - 540 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
고차원 특성과 높은 상관성은 하이퍼스펙트럴 데이터의 주요 특징이다. LDA와 그 변형 선형 투사 방법들이 고차원 스펙트럴 정보로부터 저차원의 특징을 추출하는데 사용되었다. LDA는 학습 데이터가 적은 경우 흔히 발생하는 과대적합으로 인해 일반화 성능이 낮아지는 문제가 발생하는데, 이를 완화하기 위하여 LDA 규칙화(regularization) 방법들이 제시되었다. 그 중, 평탄도(smoothness) 제약에 기반한 LDA 규칙화 기법은 높은 상관성을 갖는 하이퍼스펙트럴 데이터의 특성에 적합한 특징 추출 기법이다. 본 논문에서는 하이퍼스펙트럴 데이터 분류에서 평탄도 제약을 갖는 LDA 규칙화 방법을 소개하고 학습 데이터 조건에 따른 성능을 실험적으로 분석한다. 또한, 분류 성능의 향상을 위한 스펙트럴 정보와 공간적 정보의상관성을 함께 활용하는 이중 평탄도 LDA 규칙화 기법을 제시한다.

목차

요약
Abstract
1. 서론
2. 하이퍼스펙트럴 영상
3. LDA 기법
4. 하이퍼스펙트럴 영상 분류를 위한 S-LDA
5. 실험 결과 및 분석
6. 결론
참고문헌
저자소개

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002800407