메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
온톨로지의 크기가 대형화됨에 따라, 온톨로지 내부 구조는 점점 복잡해지고 있다. 따라서 온톨로지 구축과정에서 발생하는 여러 가지 논리적 오류를 찾아내어 수정하는 것은 매우 어려운 작업이 되고 있다. Minerva[1]는 OWL로 작성한 온톨로지 중 논리적 오류를 갖는 개념들을 자동으로 탐지하고, 개념간의 계층 관계를 추론하기 위해 개발된 온톨로지 추론 엔진이다. Minerva를 포함한 대부분의 서술 논리 기반의 온톨로지 추론 엔진은 태블로 알고리즘(Tableau Algorithm)을 기반으로 동작한다. 태블로 알고리즘을 그대로 적용할 경우 시간 및 공간 복잡도가 상당히 높아지기 때문에 다양한 최적화 기법이 필요하다. 본 논문에서는 태블로 알고리즘을 사용하는 온톨로지 추론 엔진의 속도를 향상시키는 최적화 기법들을 제안한다. 제안한 기법들은 선행 연구로서 이미 개발된 온톨로지 추론엔진 Minerva에 적용되어 성능향상을 이끌어 내었다.

목차

요약
Abstract
1. 서론
2. 기본 개념
3. 선행 연구
4. 태블로 알고리즘 기반 온톨로지 추론 엔진의 속도 향상을 위한 최적화 기법
5. 실험 및 평가
6. 결론 및 향후 연구
참고문헌

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0